
I N S T I T U T E F O R D E F E N S E A N A L Y S E S

Conversion of the Forces Mobilization
Model (FORCEMOB) from FORTRAN to C

James S. Thomason, Project Leader
Robert J. Atwell

Amrit K. Romana
Thomas J. Wallace

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

August 2015

Approved for public release;
distribution is unlimited.

IDA Document D-5555
Log: H 15-000717

About This Publication
The work was conducted by the Institute for Defense Analyses (IDA) under
contract HQ0034-14-D-0001, Project DE-6-3247 A12, “Comprehensive
Assistance to DLA Strategic Materials in preparing Biennial Reports of the DOD
to the Congress on National Defense Stockpile Requirements and Mitigation
Options,” for the Strategic Materials Office of the Defense Logistics Agency
(DLA-Strategic Materials). The views, opinions, and findings should not be
construed as representing the official position of either the Department of
Defense or the sponsoring organization.

Acknowledgments
The authors wish to thank Dr. Peter Picucci for review and Mrs.
Amberlee Mabe-Stanberry for editing and production assistance.

Copyright Notice
© 2015 Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, Virginia
22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Document D-5555

Conversion of the Forces Mobilization
Model (FORCEMOB) from FORTRAN to C

James S. Thomason, Project Leader
Robert J. Atwell

Amrit K. Romana
Thomas J. Wallace

This page is intentionally blank.

iii

Executive Summary

This document describes the conversion of the Forces Mobilization Model (FORCEMOB)
from the FORTRAN programming language to the C programming language. FORCEMOB is
used in the Risk Assessment and Mitigation Framework for Strategic Materials (RAMF-SM),
which provides support to the Defense Logistics Agency (DLA) in estimating potential shortfalls
of strategic and critical materials (S&CM) in a national emergency scenario and determining
materials (and quantities thereof) to be included in the National Defense Stockpile (NDS).
FORCEMOB is stable and produces consistent results, but updating it to a more modern
language would be beneficial for software maintenance and development. Conversion was
achieved through a combination of automated translation with the FOR-C tool and human code
review and modification. The C version of FORCEMOB was validated against the FORTRAN
version: given identical data, it should produce identical results. Testing reveals that the C
version of FORCEMOB is identical to 6 decimal places, which is well within an acceptable
range of precision. The authors conclude that the C version of FORCEMOB is ready for
operational use.

This page is intentionally blank.

v

Contents

1. Introduction ...1
2. Background ..3
3. Impetus for Code Conversion ..5
4. Conversion Methodology ..7
5. Manual Changes ..9

A. Simplifying the Conversion with C Library Functions9
B. Creating New Functions ..10
C. Omitting FORTRAN 77 Intricacies ..11
D. Clarifying Variable Names ..12
E. Removing Unused Features of Program ...12
F. Correcting FOR-C File Procedures ...13
G. Correcting FOR-C Directory Specifications ...13

6. Testing and Validation ..15
Appendix A Percentage Discrepancy Between F-FM and C-FM A-1
Appendix B FORCEMOB Flowchart ..B-1
Appendix C Illustrations ..C-1
Appendix D References .. D-1
Appendix E Abbreviations ... E-1

This page is intentionally blank.

1

1. Introduction

This document reports the conversion of the computer code for the Forces Mobilization
Model (FORCEMOB), a software program used in the Risk Assessment and Mitigation
Framework for Strategic Materials (RAMF-SM), from the FORTRAN 77 language to the C
language. It describes FORCEMOB and provides background context on its use, explains the
impetus for code conversion, details the process by which the code was converted, and
summarizes the result. Although the subject matter is inherently technical, this document is
written for a general audience.

This page is intentionally blank.

3

2. Background

The Strategic and Critical Materials Stock Piling Act calls for the establishment of a National
Defense Stockpile (NDS) and requires biennial reports to the U.S. Congress on stockpile
requirements and recommendations. The Institute for Defense Analyses (IDA) assists the
Defense Logistics Agency (DLA) in determining these requirements. IDA has developed an
analytical process, RAMF-SM, to identify potential shortfalls of strategic and critical materials
(S&CM) and assess mitigation strategies. Identification of the likely number and severity of
shortfalls—“Step 2” of RAMF-SM—is accomplished using a suite of models and data. This
document is specifically concerned with a single model within Step 2 of RAMF-SM: the Forces
Mobilization Model (FORCEMOB).

FORCEMOB is used to compute yearly total goods and services production (i.e., economic)
requirements in a national emergency scenario. FORCEMOB generates total goods and services
requirements based on essential civilian and base military needs under normal peacetime
conditions, plus economic demands stemming from the national emergency. FORCEMOB
modeling includes the exclusion of non-essential civilian demand, homeland event damage,
regeneration of weapons lost and munitions expended in the conflict, and import disruptions or
export cutbacks. FORCEMOB also assesses and models options to eliminate production
shortfalls (if extant): namely, more fully using existing industrial capacity or investing in new
production capacity. Running FORCEMOB generates U.S. industrial production requirements,
which are then used in later phases of Step 2 to calculate S&CM requirements and potential
shortfalls.

FORCEMOB was created in the early 1990s and is written in the FORTRAN 77 computer
language. FORCEMOB is approximately 14,000 lines of code (a flawed but frequently cited
measure of software complexity).1 It is a pure numerical computation program without a
graphical user interface (GUI): once run, FORCEMOB reads user-created input files, performs
mathematical operations upon them, and outputs text files containing results. Its operations
largely consist of matrix algebra.

1 Lines of code (LOC) can be a useful gross measurement of software complexity: for example, a computer

operating system such as Microsoft Windows is much more complex than a simple game such as Pacman and has
many more LOC. In this vein, algorithmic information theory describes objects in terms of the computability
resources needed to specify the object (Kolmogorov complexity). However, LOC is affected by many factors not
related to software complexity – for example, the language in which a program is written and stylistic coding
practices – that make it a highly imprecise measurement. For more, see: Steve McConnell, Software Estimation:
Demystifying the Black Art (Redmond, WA: Microsoft Press, 2006); and Andrei Kolmogorov, "On Tables of
Random Numbers," Sankhya Ser. A. 25 (1963): 369–375.

4

This simplified description of FORCEMOB is adequate for the purposes of this document,
but if the reader seeks a deeper understanding of a particular point, IDA has produced extensive
documentation of RAMF-SM and its component models, including FORCEMOB:

• IDA Paper P-5190 contains a complete overview of the RAMF-SM methodology used
for the 2015 Requirements Report.

• IDA Document D-5432 presents an overview of Step 2 of RAMF-SM, including an
exhaustive listing of every model and data item used for analysis supporting the 2015
Requirements Report.

• IDA Paper P-2953 is a comprehensive documentation of FORCEMOB, including full
mathematical derivations of its algorithms and descriptions of individual FORTRAN
subroutines.

• IDA Document D-5433 is a new user’s guide to FORCEMOB that includes an
unclassified training version of the software.

5

3. Impetus for Code Conversion

This document describes the conversion of FORCEMOB from FORTRAN 77 to C, raising
the question of why conversion is desirable. The answer is not that FORCEMOB as currently
coded is defective: it is stable, bug-free, and produces consistent results. The answer also is not
that the conceptual methodology behind FORCEMOB is under revision: given identical data, the
FORTRAN and C versions of FORCEMOB should and do achieve identical results. Rather, the
answer has to do with inherent features of the FORTRAN 77 and C languages, each of which has
advantages and disadvantages. FORTRAN 77 was a sensible choice at the time of
FORCEMOB’s inception, but C is better suited for new requirements, as this section explains.

FORTRAN is one of the oldest programming languages, originally developed at IBM in the
1950s. There have been many subsequent revisions of FORTRAN: FORTRAN 77 (in which
FORCEMOB is coded), FORTRAN 90, FORTRAN 95, FORTRAN 2003, and FORTRAN
2008. FORTRAN is particularly well suited for numeric computation and scientific computing,
fields in which it continues to enjoy broad usage. FORTRAN 77 has no pointers and does not
allow aliasing, meaning that the programmer can access a specific memory area only through the
specific symbol associated with that memory area. These restrictions allow FORTRAN 77
compilers to optimize code to a greater degree than other languages with more complex memory
allocation, making FORTRAN very fast.2 FORTRAN’s relative simplicity also makes it very
stable and portable, meaning that programs written in it tend to work well on many different
types of computers with little maintenance required. These features all made FORTRAN a good
choice for coding FORCEMOB at the time of its inception. In particular, early 1990s computers
had exponentially less computing power than contemporary machines, and so the speed of
FORTRAN at number-crunching was a great advantage.

However, disadvantages have emerged over time. Although modern at the time of
FORCEMOB’s inception, FORTRAN is now an increasingly obsolete language that has been
superseded by other languages. It is increasingly difficult to find programmers experienced in
FORTRAN, hindering maintenance or modification of FORCEMOB. The greater power of
modern computers can, in certain cases, negate the speed advantage of FORTRAN: the
calculations performed in FORCEMOB now can be done in a few seconds regardless of

2 Pointers are used in computer programming to refer to a value stored somewhere in the computer memory using

its address (i.e., they “point” to where the value is stored). Using pointers to store two separate values in the same
memory location is called aliasing. Programming languages without aliasing (such as FORTRAN) can achieve
faster performance than languages with aliasing (such as C) due to ease of compiling. Compiling code means
converting human-written code into machine-interpretable binary code. This typically is done automatically by a
specialized program called a compiler. In essence, programming languages without pointers are simpler and
hence allow the compiler to more aggressively fine-tune the code for speed.

6

language.3 FORTRAN encourages reliance on global variables, which are discouraged in a group
development setting.

Another limitation of FORTRAN relative to RAMF-SM’s needs is that it is an imperative
language.4 Essentially, this means that FORTRAN code consists of a list of step-by-instructions
for the computer to execute in relatively linear fashion. Although sufficient for some
applications, the imperative programming paradigm has generally been superseded by object-
oriented programming (OOP), in which the programmer declares different types of data objects
and interactions between them. OOP is particularly useful for combining multiple sub-modules
(possibly developed by different programmers) into a large complex program.

The above point is of critical importance for RAMF-SM. Currently, RAMF-SM uses many
different models that must be manually interfaced: in other words, an analyst performs a run of
one model, extracts results as a text file or spreadsheet, substitutes them into another model, and
so on. This process carries a high labor cost and inhibits reproducibility, in that significant effort
is required to track exactly what inputs were used in a particular run of a particular model
(keeping in mind that many different runs are made for a single study). These issues could be
mitigated by integrating the models in a single program so that they interface by explicitly
defined computer code rather than inherently variable human behavior. Doing so could reduce
labor requirements, allow greater traceability of results, and facilitate future development.
RAMF-SM models other than FORCEMOB are written in modern C and C++, and so if all the
models are to be integrated, it makes more sense to convert FORCEMOB from FORTRAN than
it does to convert the other models to FORTRAN.

3 FORTRAN’s speed still is useful for high-end and scientific computing. However, FORCEMOB is not

particularly computationally intensive and so does not require a performance-optimized language to finish in
reasonable time.

4 Later versions of FORTRAN do support object-oriented programming, but are not well-regarded.

7

4. Conversion Methodology

The company Cobalt Blue offers a software program, FOR-C, which automatically rewrites
FORTRAN 77 code into C. This automated method offers significant labor savings as compared
to the programmer time needed for manual conversion.

FOR-C has a track record of success in converting large, complex analytical software from
FORTRAN to C. Idaho National Laboratory used FOR-C to convert RELAP5-3D, a Department
of Energy and Nuclear Regulatory Commission-funded model used to simulate and analyze
nuclear reactors.5 FOR-C also was used to convert Cloudy, a model funded by the National
Aeronautics and Space Agency and National Science Foundation that is widely used in the
astronomical community for large-scale plasma simulation and interpretation of spectroscopic
data.6 Notably, Cloudy was about 130,000 lines of FORTRAN 77 code—an order of magnitude
larger than FORCEMOB—and was successfully converted using FOR-C. In sum, there is strong
evidence to suggest FOR-C is adequate for conversion of FORCEMOB from FORTRAN to C,
and so we chose to rely on it.

However, this conversion was not entirely automated. To ensure code quality, two human
reviewers each conducted an independent, line-by-line audit of the C code produced by FOR-C.
They tested each subroutine for functionality and sought to ensure the code was human-readable
and followed programming best practices. These reviewers made a number of manual changes to
the C code produced by FOR-C, as explained in the following section.

5 Mesina, George. “Architectural Advancements in RELAP5-3D.” American Nuclear Society Winter 2005

Meeting; Guillen, Donna, George Mesina, and Joshua Hykes. “Restructuring RELAP5-3D for Next Generation
Nuclear Plant Analysis.” American Nuclear Society 2006 Annual Meeting.

6 Ferland, G.J. “Cloudy’s Journey from FORTRAN to C, Why and How.” Astronomical Data Analysis Software
and Systems IX, ASP Conference Proceedings, Vol. 216, edited by Nadine Manset, Christian Veillet, and Dennis
Crabtree. Astronomical Society of the Pacific, ISBN 1-58381-047-1, 2000, p.32.

This page is intentionally blank.

9

5. Manual Changes

While the code produced by FOR-C was functional, the literal translation was difficult to
read. The manual changes described below were applied to the C version of FORCEMOB after
running the FORTRAN 77 version of FORCEMOB through FOR-C. These changes greatly
simplified the C code for FORCEMOB and did not hamper performance. Rather, they improved
the readability of code so that FORCEMOB could be more easily maintained.

A. Simplifying the Conversion with C Library Functions
The FOR-C conversion of FORCEMOB included literal translations of FORTRAN 77

library functions with all of their eccentricities and overhead. For the needs of FORCEMOB, this
overhead was often unnecessary; some C library functions achieve the same goals with
insignificant differences. When it could be done without sacrificing functionality, FOR-C
converted functions were supplemented with close C library equivalents.

The main example of this function simplification is for copying the contents of one string to
another. For this broad purpose, FOR-C generated the functions f_strncpy(), fchrncpy(),
fchrlcpy(), which were each used depending on whether the lengths of strings were specified and
whether the strings were null terminated. However, for the needs of FORCEMOB, these details
do not matter. As a result, the reviewers manually changed instances of these functions to the
standard, well-known function strcpy_s() (from the C String Library), which copies one string to
a target string of a specified length. The following table shows a complete listing of C Library
replacements by displaying FORTRAN 77 functions, what they were converted to using FOR-C,
and what they were replaced with by the reviewers, as well as justifications for the replacements.
The replacements of the FOR-C generated the functions f_strncpy(), fchrncpy(), and fchrlcpy(),
are described below as IDs six, seven, and eight, respectively.

10

Table 1. Summary of C Library Replacements

ID
FORTRAN 77

Function FOR-C Function
C Library
Function Reason for Replacement

1 CHAR .EQ.
CHAR

f_strcmp(char,
char)

strcmp(char,
char)

Do not need to maintain the blank
padding included in f_strcmp() because

only strings of the same length are
compared.

2

GETARG(INT
LINE INDEX,

CHAR
TARGET,

CHAR)

getarg(int line
index, char target

variable, char)

strcpy_s(char
target, int

target length,
char)

Only one line should be input into the
command line to run FORCEMOB. It is
not necessary to specify which line to
copy input from so strcpy_s() will read

the first line and receive the correct
string.

3

GETDAT(IYR,
IMON, IDAY)
GETTIM(IHR,
IMIN, ISEC,

IHUND)

gettim(ihr, imin,
isec, ihund) time(NULL)

The format of the time variable is not
important, so long as the same

information is included. Thus time()
includes the date and time needed.

4
INQUIRE(CHAR

FILE NAME,
CHAR OPTION)

inqu_opened(int
unit number)

access(char
file path, int

mode)

The option in FORTRAN for
FORCEMOB is always set to "exist".

This C library equivalent does the same
check, simply checks if the file exists,

but does not do other unnecessary
checks included in INQUIRE() and

inqu_opened(), such as checking if the
file is already open.

5

TARGET =
CHAR(1:INT

TARGET
LENGTH)

f_strncpy(char
target, char, int
target length)

strcpy_s(char
target, int

target length,
char)

Do not need to maintain blank padding
which is specified in f_strncpy().

6 TARGET =
'CHAR'

fchrncpy(char
target, int length
to copy, char)

strcpy_s(char
target, int

target length,
char)

Do not need to maintain blank padding
which is specified in f_strncpy().

7

TARGET(INT
TARGET

LENGTH) =
COPIED

fchrlcpy(char
target, int target

length, char
copied, int char

length)

strcpy_s(char
target, int

target length,
char)

Do not need to maintain fixed length
option which is specified in fchrlcpy().

8
WRITE(CHAR
TARGET, INT

FORMAT)

Iwrt_seqbeg(char
target, int target

length, int format)

sprintf_s(char
target, int size,

format, …)

The purposes of these two functions
are the same, but the C library

equivalent uses C style formatting as
opposed to FORTRAN style formatting.

B. Creating New Functions
While the C libraries are extensive, in some cases there was not an equivalent C library

function that could supplant the FOR-C function. In these situations, if the FOR-C function was

11

more intricate than necessary, reviewers wrote and substituted more simple functions specific to
the needs of FORCEMOB.

For example, there are several instances in which FORCEMOB trims and concatenates a
directory, a file name, and an extension, and assigns this resulting string to a new variable.
FORTRAN library has a function to achieve this goal, but the well-known C libraries do not. In
converting FORCEMOB, FOR-C generated vcpyncat() and fcpyncat() to achieve this purpose.
However, both of these functions had several checks and features that FORCEMOB did not
require, such as the ability to concatenate an unspecified number of arrays. These features made
the functions relatively difficult to debug and maintain. In order to reduce the number and
complexity of functions necessary to learn for maintenance of the program, reviewers developed
the function trimcat(). This 25-line function, consisting of three simple loops, trims and
concatenates three strings and assigns the resulting string to a new variable, which is all that is
needed in FORCEMOB.

In addition, there are instances in which FORCEMOB needs to assign a specified number
of characters from an array to a temporary array. FOR-C generated ntS() and nSTR() to handle
these situations; however, similar to the FOR-C functions described above, these functions are
difficult to read and maintain. Reviewers replaced calls to these two functions to calls of a
function trm(). This 15-line function trims a character array to a specified length and assigns the
result to a temporary variable.

C. Omitting FORTRAN 77 Intricacies
FORTRAN 77 has several intricacies that FOR-C preserved in the literal translation. If not

necessary to the functionality of FORCEMOB, the translated intricacies were removed.

For instance, by default in FORTRAN 77 all parameters are passed by reference. In C, the
programmer has the option to pass by reference or to pass by value.7 Given that all parameters
were passed by reference in the FORTRAN 77 version of FORCEMOB, FOR-C passed all
arguments in the C conversion by reference. In many cases this is the appropriate choice.
However, when a scalar value is passed to a function as a limit or a size, it is not necessary to
pass by reference. In the FOR-C literal translation, passing by reference in these cases resulted in
first using a function to pass the scalar to a temporary value, then passing this address as a
parameter into the desired function. This made for a difficult and messy translation. To simplify

7 Pass by value means making a copy in memory of the actual parameter’s value that is passed. Pass by reference

(also called pass by address) copies the address of the actual parameter. Thus, if a parameter is passed into a
function by value, the parameter will not be modified outside of the function. If it is passed by reference, if the
parameter is modified in the function it will also be modified outside of the function. The manner in which a
coder decides to pass a variable is primarily an issue of scope. In other words, it depends on which parts of the
program the coder wants to see or use the variable. Passing a variable by reference means that the function can
change that variable’s value, i.e., the scope of the variable is larger, whereas passing a variable by value limits its
scope.

12

the code, reduce the number of functions that needed to be learned, and use best C coding
practices, reviewers made the necessary modifications to pass all scalar values by value.

Additionally, by default, FORTRAN 77 passes a hidden length argument along with all
string arguments. In the literal translation of FORCEMOB, FOR-C included this string length as
a parameter for all strings that were passed. Yet in most cases these string lengths were not used
in the function they were passed to. In these situations, the function parameters were reduced to
only those that were used in the functions.

Furthermore, FORTRAN 77 strings are not null-terminated, while all strings generated by
C are null-terminated by default.8 When converting FORCEMOB, FOR-C generated the
function strini(char, int) to null terminate a string char of length int. The assumed purpose of this
function is to allow strings to be passed between FORTRAN 77 code and C code without errors.
However, this is not necessary for the FORCEMOB conversion because all of the code will be in
C. All calls of this function were removed, omitting 234 lines of code.

D. Clarifying Variable Names
FOR-C automatically modified several FORCEMOB variable names and generated new

variables where necessary. For clarity and consistency, reviewers adjusted these default names.

For example, FOR-C identified non-null terminated strings in the FORTRAN 77 version of
FORCEMOB by appending an ‘L’ to the end of their variable name when converting the code to
C. Again, since all of the FORCEMOB code will now be in C, and all strings in C are null-
terminated, it was not necessary to distinguish these particular strings. Therefore the appended
‘L’ was removed from all variable names. This was done to maintain consistency with
FORTRAN 77 version of the program.

Additionally, FOR-C needed to generate new variables when translating certain procedures,
such as the alternate returns procedure. 9 In this case a variable _altretn0 was generated. This
name gives no insight to the reason for the alternate return. In these cases, reviewers modified
variable names so they were more descriptive. For example, most _altretn0 variables were
changed to readerr to signify that the cause for the alternate return was an error in reading a file.

E. Removing Unused Features of Program
Outdated function calls, particularly those to cancel(), were removed. This function was

written to support an older version of FORCEMOB that included a GUI. If the user tried to exit
the FORCEMOB GUI in the middle of a run, a text file called CANCEL.flg was created in the

8 A null-terminated string is a character string stored as an array containing all the characters in order and

terminated with a null character ‘\0’.
9 Alternate return arguments tell the program to jump to a specified point in a calling routine if the subroutine that

it calls so directs. This is typically used in the event of some error condition.

13

appropriate directory. Every call to the function cancel() searched for CANCEL.flg and exited
the program if it was found. Since the GUI has been removed, exiting the FORCEMOB GUI,
and therefore the function cancel(), has become obsolete. In the converted FORCEMOB,
cancel() and all calls to it were removed.

F. Correcting FOR-C File Procedures
Both FORTRAN and C contain several statuses with which to open files. For example, files

can be opened for reading only, for writing a new file, for replacing an old file. In addition,
FORTRAN has an option to open a file with an “unknown” status. This status is used in
FORCEMOB to open a file such as the history file, which may or may not already exist. With
this option, FORCEMOB will delete the old history file if it exists, and write a new history file.
However, FOR-C converted this “unknown” status in a slightly different manner. Rather than
deleting an old history file with the same name, the FOR-C converted program would begin
overwriting the old history file. However, this meant when an error occurred and the program
terminated prematurely, the error message was printed but the rest of the history file from the
previous run remained intact. This made it difficult to determine if errors occurred with a quick
scan of the history file. To amend this, rather than simply overwriting the history file, reviewers
modified the code so that for each run the old history file is deleted and a new history file is
created. As a result, if there is an error in a run, the error message can be easily identified as the
last line printed in the history file.

G. Correcting FOR-C Directory Specifications
The final correction made to the FOR-C conversion of FORCEMOB rectifies the procedure

that read input and output directory specifications from the Control Inputs file.10 The Control
Inputs file specifies directories with the typical structure, where backslashes (‘\’) separate
folders. This presents a problem in the conversion because in C programming a single backslash
represents the escape character and only a double backslash (‘\\’) can be interpreted as a single
backslash.11 When the FOR-C program tried to read the input and output directories as it would
any other line, the program read single backslashes as escape characters and directories were
saved incorrectly. A new function was written, read_directory(),to read these two directories.
This function reads a specified section of a file character by character and replaces any
backslashes with double backslashes. Thus, directories are accurately read and interpreted from

10 The Control Inputs file is a text file specific to each run of FORCEMOB. Along with input and output directories,

it specifies scenario dates, sensitivity parameters, options and input files to be used, and output reports to
generate.

11 Escape characters tell the compiler to escape the typical parsing context for the following character. In other
words, using a backslash means to treat the character following the backslash as special. For example, if ‘\n’
appears in a string, this means to escape interpreting the ‘n’ as just an ‘n’, and instead treat the ‘n’ as inserting a
new line. Another common use of the backslash in C is ‘\t’, which means to insert a tab. Only if ‘\\’ appears in a
string is this character combination interpreted as ‘\’.

14

the Control Inputs file. As a result there can be complete compatibility between the input files
used in the FORTRAN and C versions of FORCEMOB.

15

6. Testing and Validation

Together, FOR-C and the reviewers converted the old version of FORCEMOB written in
FORTRAN (let us call this F-FM for FORTRAN FORCEMOB) into a new version written in C
(which we will call C-FM). C-FM appeared to run well and had no obvious errors. However, the
reviewers also conducted testing and validation in order to ensure that C-FM can be safely used
to supersede F-FM. An automated script was used to feed identical data into F-FM and C-FM,
with the expectation that they would output identical results.

Before reporting the details of this validation, two points must be made. One, the purpose of
the validation was to ensure that C-FM produced identical results as F-FM, not to verify that
FORCEMOB (programmed in whatever language) is correct. This exercise is intended to
validate C-FM against F-FM and provides no insight into modeling accuracy. Two, the reviewers
only tested the most commonly used configuration of FORCEMOB. FORCEMOB can be run in
many different ways depending on the needs of the user – for a full listing, see IDA Paper P-
2953 – but the overwhelming majority of FORCEMOB runs have been executed according to a
single configuration.12

The reviewers conducted an automated validation procedure. A shell script runs F-FM and
C-FM using identical data and configuration settings. The data used for this test run was
carefully chosen to engage all of FORCEMOB’s major subroutines to test their functionality. In
particular, the combination of civilian, base military, and conflict military requirements is
sufficiently large to cause production shortfalls, thus engaging FORCEMOB’s emergency
investment algorithm.13 The shell script loads their respective output reports to the R statistical
computing platform. The shell script calls an R script to parse the respective output reports and
isolate the computed civilian, emergency investment, military (base plus conflict), and total
requirements produced by F-FM and C-FM. This means the two versions of FORCEMOB each
have four 4x361 matrices (corresponding to production requirement forecasts across four years,
and 360 economic sectors plus 1 summed total). The R script then subtracts the C-FM matrices
from the F-FM matrices, and writes the calculated difference as four comma-separated value
(CSV) files. If these files are full of zeros, it indicates that C-FM produces identical results to F-
FM. This testing procedure indicates that C-FM produces identical results (to 6 decimal places)

12 Specifically, FORCEMOB has many options for how to model military conflict, including modeling of pre-

existing U.S. weapons inventories and force structure, dynamic allocation of assets between theaters, and more.
The most common practice has been to input a weapon requirements file containing the weapons systems and
quantities thereof lost in the modeled conflicts (this is referred to as Option 0B). Option 0B is the only
configuration the reviewers tested.

13 The design of FORCEMOB means that a single data file, if carefully constructed, is sufficient for testing.
FORCEMOB is a deterministic model, not stochastic, and so does not experience variation across multiple runs
(if input data is held constant). Testing thus needs only to engage all of FORCEMOB’s major sub-routines, which
the test dataset did.

16

to F-FM. Appendix A shows the difference between C-FM and F-FM expressed as a percentage
of the original F-FM calculation. The maximum error was 4.01099E-07 percent. The minuscule
discrepancies likely are explained by variation in how C and FORTRAN calculate floating point
numbers.14 This is well within an acceptable degree of precision.

Reviewers also compared the run-time and memory usage of F-FM and C-FM. Using the
single configuration tested, the elapsed time for F-FM is 0.27 seconds whereas the elapsed time
for C-FM is 0.212 seconds. This 0.058 second difference is negligible. Reviewers used a
third-party program (VMMap) to measure the memory used by each version of the program.
F-FM uses 24,356 kilobytes of random access memory (RAM) whereas C-FM uses 22,740
kilobytes of RAM. The below VMMap charts analyze memory usage in more detail. In sum, C-
FM is marginally faster and less memory-intensive than F-FM, and well-suited for practical use
on a commodity machine.

In sum, the conversion produces identical results with a minimal run-time and comparable
memory usage. We conclude that C-FM is ready for operational use.

14 Most of the errors are in the first year because this is when the conflict occurs, meaning it has the largest
shortfalls and hence most computations performed (implying the most floating point discrepancies as well).

Figure 1. Memory Analysis of F-FM and C-FM

17

[I] Process: F~M.exe

PID: 7 112

Co!Mlitted:

I
Private Bytes:

I
Worlcing Set:

I I
Size . - -- II "

mage 20.652K 20,208 K
Mapped Rle 3.28SK 3.288 K
Shareable 1,312K 308 K

t-1' 2.112K 332K
Managed Heap
Stack 2.560K 84 K
Private Dala 18.192K 136K
f'age Table

·~ l.klusable - ,_ 652 K 652 K
Free 2.048.320K

1.11 Process: C-FMv2.exe

~ PID: 6824

Committed:

r
Private Bytes:

I
Wor1dng Set:

I
Type
fci;;i · - ·- · - ··- · .. - · -- -4s-2MiC - -··- 23 504K
~age 17.812 K 17.368 K
lieaP 1.024 K 300 K
!'"vale Data 18.192 K 136 K
Slack 2.560 K 84 K
Mapped File 412 K 412 K
Sharel!ble 5.444 K 4.440 K
Managed Heap -
r age Table
l.klusable
Free

-
-- 764 K

2.050.880 K
764K

I

14.688 K

332K

84K
136K

11.368 K
300K
136K
84K

I

'rivate WS Shareable WS

II I :
2264 K 580 K 1.684 K

304K 304K
136K 136K
316K 316 K

44K 44K
136K 132K 4 K

I

Shareable WS
-1Tss'K·- -· - -·rois_i<_ - - -·:n4oic · -
2.288 K 544 K 1.744 K

300K 300K
136K 132K 4 K
40K 40K

156 K
236K

156 K
236K

Shared WS locked WS Blocks
I

1.284 K 112
304 K 2
128 K 7

6

12
4 K 15

15

Shared WS Blocks
Tllni< ____ ----- --1ss· -
1.488 K 115

2
4 K 15

156 K
224K

12
1

11

18

24,356 K

I I
15, 240 K

I
3, 200K

I
largest

15.244 K
2.876K
1,024K
1.024K

1.024K
15.360 K

60K
858.112K

22,740K

I
11,88BK

I
3,156 K

11.452K
1.024K

15.360 K
1.024K

412 K
4.092 K

60K
628.096 K

I

This page is intentionally blank.

A-1

Appendix A
Percentage Discrepancy Between F-FM and C-FM

Table A-1. Percentage Discrepancy

Economic Sector Year 1 Year 2 Year 3 Year 4

1 0 0 0 0
2 8.77E-08 0 0 0
3 0 0 0 0
4 -6.54E-08 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 -3.31E-09 0
17 6.38E-08 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 0 0 0 0
25 0 0 0 0
26 0 0 0 0
27 0 0 0 0
28 0 0 0 0
29 0 0 0 0
30 -7.51E-08 0 0 0
31 -2.41E-09 0 0 -2.20E-09
32 0 0 0 0
33 0 0 0 0

A-2

Economic Sector Year 1 Year 2 Year 3 Year 4

34 -1.13E-07 0 0 0
35 0 0 0 0
36 0 0 0 0
37 6.55E-08 0 0 0
38 0 0 0 0
39 0 0 0 0
40 0 0 0 0
41 0 0 0 0
42 0 0 0 0
43 0 0 0 0
44 0 0 0 0
45 0 0 0 0
46 0 0 0 0
47 0 0 0 0
48 -6.96E-08 0 0 0
49 6.48E-08 0 0 0
50 0 0 0 0
51 -1.40E-07 0 0 0
52 0 0 0 0
53 0 0 0 0
54 0 0 0 0
55 -1.00E-07 0 0 0
56 0 0 0 0
57 0 0 0 0
58 0 0 0 0
59 0 0 0 0
60 -6.67E-08 0 0 0
61 9.25E-08 0 0 0
62 0 0 0 0
63 0 0 0 0
64 -9.58E-08 0 0 0
65 0 0 0 0
66 0 0 0 0
67 0 0 0 0
68 0 0 0 0
69 0 0 0 0
70 0 0 0 0
71 0 0 0 0

A-3

Economic Sector Year 1 Year 2 Year 3 Year 4

72 0 0 0 0
73 0 0 0 0
74 -6.68E-08 0 0 0
75 0 0 0 0
76 0 0 0 0
77 0 0 0 0
78 0 0 0 0
79 0 0 0 0
80 0 0 0 0
81 0 0 0 0
82 4.01E-07 0 0 0
83 0 0 0 0
84 0 0 0 0
85 0 0 0 0
86 -8.31E-08 0 0 0
87 0 0 0 0
88 0 0 0 0
89 0 0 0 0
90 0 0 0 0
91 0 0 0 0
92 -1.63E-08 0 0 0
93 0 0 0 0
94 0 0 0 0
95 0 0 0 0
96 0 0 0 0
97 0 0 0 0
98 0 0 0 0
99 0 0 0 0

100 6.35E-08 0 -3.00E-08 0
101 0 0 0 0
102 0 0 0 0
103 0 0 0 0
104 0 0 0 0
105 0 0 0 0
106 0 0 0 0
107 5.91E-08 0 0 0
108 0 0 0 0
109 0 0 0 0

A-4

Economic Sector Year 1 Year 2 Year 3 Year 4

110 0 0 0 0
111 0 0 0 0
112 0 0 0 0
113 0 0 0 -9.41E-08
114 -9.34E-08 0 0 0
115 0 0 0 0
116 0 0 0 0
117 0 0 0 0
118 0 0 0 0
119 0 0 0 0
120 0 0 0 0
121 0 0 0 0
122 -1.10E-07 0 0 0
123 0 0 0 0
124 1.28E-07 0 0 0
125 0 0 0 0
126 0 0 0 0
127 0 0 0 0
128 -9.21E-08 0 0 0
129 0 0 0 0
130 0 0 -1.09E-07 0
131 0 0 0 0
132 0 0 0 0
133 0 0 0 0
134 0 0 0 0
135 0 0 0 0
136 0 0 0 0
137 0 0 0 0
138 -8.54E-08 -8.16E-08 0 0
139 1.20E-07 0 0 0
140 0 0 0 0
141 -8.59E-08 -8.19E-08 0 0
142 0 0 0 0
143 0 0 0 0
144 0 0 0 7.43E-08
145 0 0 0 0
146 0 0 0 0
147 0 0 0 0

A-5

Economic Sector Year 1 Year 2 Year 3 Year 4

148 -1.04E-07 0 0 0
149 -2.37E-07 0 0 0
150 0 0 0 0
151 0 0 0 0
152 2.81E-07 0 0 0
153 0 -1.48E-07 0 0
154 0 0 0 0
155 0 0 0 0
156 0 0 0 0
157 0 0 0 0
158 0 0 0 0
159 0 0 0 0
160 0 0 0 0
161 0 0 0 0
162 0 0 0 0
163 0 0 0 0
164 0 0 0 0
165 1.13E-07 0 0 0
166 0 0 0 0
167 0 0 0 0
168 1.83E-07 0 0 0
169 0 0 0 0
170 0 0 0 0
171 0 0 0 0
172 0 0 0 0
173 8.00E-08 0 0 0
174 0 0 0 0
175 0 0 0 0
176 -1.13E-07 0 0 0
177 0 0 0 0
178 0 0 0 0
179 0 0 0 0
180 0 0 0 0
181 0 0 0 0
182 0 0 0 0
183 7.41E-08 0 0 0
184 0 0 0 0
185 6.82E-08 0 0 0

A-6

Economic Sector Year 1 Year 2 Year 3 Year 4

186 0 0 0 0
187 1.16E-07 0 0 0
188 -1.61E-07 0 0 0
189 0 0 0 0
190 0 0 0 0
191 0 0 0 0
192 0 0 0 0
193 0 0 0 0
194 1.21E-07 0 0 0
195 0 0 0 0
196 0 0 0 0
197 -9.44E-08 0 0 0
198 -1.88E-07 0 0 0
199 0 0 0 0
200 0 0 0 0
201 0 0 0 0
202 0 0 0 0
203 0 0 0 6.78E-08
204 2.24E-07 0 0 0
205 0 0 0 0
206 0 0 0 0
207 -7.34E-08 0 0 0
208 0 0 0 0
209 -9.45E-08 0 0 0
210 7.73E-08 -7.35E-08 0 0
211 0 0 0 0
212 -2.52E-07 0 0 0
213 0 0 0 0
214 0 0 0 0
215 -7.51E-08 0 0 0
216 -1.48E-07 0 0 0
217 0 0 0 0
218 0 0 0 0
219 0 0 0 0
220 0 0 0 0
221 0 0 0 0
222 8.24E-08 7.94E-08 0 0
223 0 0 0 0

A-7

Economic Sector Year 1 Year 2 Year 3 Year 4

224 0 0 0 0
225 0 0 0 0
226 0 0 0 0
227 0 0 0 0
228 9.48E-08 0 0 0
229 0 0 0 0
230 0 0 1.13E-07 0
231 -1.33E-07 0 0 0
232 0 0 0 0
233 8.31E-08 0 0 0
234 0 0 0 0
235 -2.19E-07 1.09E-07 0 0
236 1.12E-07 0 0 0
237 0 0 6.85E-08 0
238 0 -1.22E-07 6.17E-08 6.27E-08
239 0 0 1.15E-07 0
240 -1.07E-07 0 0 0
241 -8.68E-08 0 1.84E-07 9.18E-08
242 0 0 0 0
243 0 0 0 0
244 0 -7.19E-08 7.26E-08 -7.26E-08
245 1.21E-07 0 0 0
246 0 0 0 0
247 0 0 0 0
248 0 0 0 0
249 0 0 0 0
250 0 0 0 0
251 0 0 0 0
252 9.78E-08 0 0 0
253 0 0 0 0
254 0 0 0 0
255 0 0 0 0
256 0 0 0 0
257 -1.11E-07 0 0 0
258 0 0 0 0
259 0 0 0 0
260 0 0 0 0
261 0 -1.14E-07 0 0

A-8

Economic Sector Year 1 Year 2 Year 3 Year 4

262 0 0 0 0
263 0 0 0 0
264 0 0 0 0
265 0 0 0 0
266 0 0 0 0
267 -6.46E-08 0 6.27E-08 0
268 0 0 0 0
269 7.68E-08 0 0 0
270 0 0 0 0
271 0 0 0 0
272 0 0 0 0
273 0 0 0 0
274 0 0 0 0
275 0 0 0 0
276 0 0 0 0
277 0 0 0 0
278 7.39E-08 0 0 0
279 9.92E-08 0 0 0
280 -9.05E-08 0 0 0
281 0 0 0 0
282 0 0 0 0
283 1.17E-07 0 0 0
284 0 0 0 0
285 1.68E-09 0 0 0
286 0 0 0 0
287 0 0 0 0
288 0 -2.06E-09 -2.02E-09 0
289 1.14E-07 0 0 0
290 0 0 0 1.52E-09
291 0 0 0 0
292 0 0 0 0
293 0 6.71E-09 0 0
294 -1.07E-07 0 0 0
295 0 0 0 0
296 0 0 0 0
297 0 0 0 0
298 0 0 0 0
299 0 0 0 0

A-9

Economic Sector Year 1 Year 2 Year 3 Year 4

300 0 5.35E-09 5.19E-09 0
301 0 0 0 0
302 0 0 0 0
303 0 0 0 9.81E-08
304 0 0 0 0
305 8.70E-08 0 0 0
306 8.77E-08 0 8.42E-08 1.03E-08
307 0 0 0 0
308 0 0 0 0
309 8.58E-08 8.58E-08 -8.41E-08 0
310 -6.85E-08 6.89E-08 -6.77E-08 0
311 0 0 0 0
312 0 0 0 0
313 0 0 0 0
314 0 0 0 0
315 0 0 0 0
316 6.59E-08 0 0 0
317 0 0 0 0
318 0 0 0 0
319 0 0 0 0
320 0 0 0 0
321 0 0 -2.11E-08 0
322 0 0 -3.45E-09 0
323 0 0 0 0
324 7.99E-08 0 0 0
325 0 0 0 0
326 0 0 0 0
327 7.39E-08 0 0 0
328 0 0 0 0
329 0 0 0 0
330 0 0 0 0
331 0 1.36E-09 0 1.29E-09
332 0 0 0 0
333 0 0 0 0
334 0 0 0 0
335 0 0 0 0
336 0 0 0 0
337 0 0 -2.93E-08 0

A-10

Economic Sector Year 1 Year 2 Year 3 Year 4

338 0 0 0 0
339 0 0 0 0
340 0 0 0 0
341 8.30E-08 0 0 0
342 0 0 0 -9.66E-08
343 0 6.89E-08 0 0
344 6.41E-08 0 0 0
345 0 0 0 0
346 0 0 0 0
347 0 0 0 0
348 7.49E-08 0 0 0
349 0 0 0 0
350 0 0 0 0
351 0 0 0 0
352 0 0 0 0
353 0 0 0 0
354 -6.02E-08 -6.52E-08 0 -6.66E-08
355 0 0 0 0
356 0 0 0 0
357 0 0 0 0
358 0 0 0 0
359 0 0 0 0
360 0 0 0 0

B-1

Appendix B
FORCEMOB Flowchart

The compact disc (CD) provided with this document contains a flowchart depicting the
code structure of the C version of FORCEMOB. It is intended to assist a programmer in
understanding FORCEMOB’s data structure and operations.

This page is intentionally blank.

C-1

Appendix C
Illustrations

Figures
Figure 1. Memory Analysis of F-FM and C-FM ...17

Tables
Table 1. Summary of C Library Replacements ...10
Table A-1. Percentage Discrepancy .. A-1

This page is intentionally blank.

D-1

Appendix D
References

Atwell, Robert, Eleanor Schwartz, Brandon Shapiro, James Thomason, and Thomas Wallace. An
Overview of Step 2 of the Risk Assessment and Mitigation Framework for Strategic
Materials. IDA Document D-5432, Alexandria, VA: Institute for Defense Analyses, 2015.

Atwell, Robert, Eleanor Schwartz, James Thomason, and Thomas Wallace. Forces Mobilization
Model (FORCEMOB): Unclassified Training Tutorial. IDA Document D-5433,
Alexandria, VA: Institute for Defense Analyses, 2015.

Ferland, G.J. "Cloudy's Journey from FORTRAN to C: Why and How." Astronomical Data
Analysis Software and Systems IX, ASP Conference Proceedings. Astronomical Society of
the Pacific, 2000. 32.

"FOR_C: FORTRAN to C Translator." COBALT BLUE, INC, 2006.

Guillen, Donna, George Mesina, and Joshua Hykes. Restructuring RELAP5-3D for Next-
Generation Nuclear Plant Analysis. American Nuclear Society, 2006.

Kolmogorov, Andrei. "On Tables of Random Numbers." Sankya Ser. A, 1963: 369-375.

McConnell, Steve. Software Estimation: Demystifying the Black Art. Redmond, WA: Microsoft
Press, 2006.

Mesina, George. Architectural Advancements in RELAP5-3D. American Nuclear Society, 2005.

Russinovich, Mark. VMMap (version 3.21). Windows. Microsoft, 2015.

Schwartz, Eleanor, An-Jen Tai, James Thomason, and Richard White. Documentation of the
Forces Mobilization Model (FORCEMOB). IDA Paper P-2953, Alexandria, VA: Institute
for Defense Analyses, 1996.

Thomason, James, et al. Analyses for the 2015 National Defense Stockpile Requirements Report
to Congres on Strategic and Critical Materials. IDA Paper P-5190, Alexandria, VA:
Institute for Defense Analyses, 2015.

This page is intentionally blank.

E-1

Appendix E
Abbreviations

CD Compact disc
C-FM The C version of FORCEMOB
CSV Comma separated values
DLA Defense Logistics Agency
F-FM The FORTRAN version of FORCEMOB
FORCEMOB Forces Mobilization Model
GUI Graphical user interface
IDA Institute for Defense Analyses
LOC Line(s) of code
NDS National Defense Stockpile
OOP Object oriented programming
RAM Random access memory
RAMF-SM Risk Assessment and Mitigation Framework for Strategic

Materials
S&CM Strategic and critical materials

This page is intentionally blank.

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

This page is intentionally blank.

	1. Introduction
	2. Background
	3. Impetus for Code Conversion
	4. Conversion Methodology
	5. Manual Changes
	A. Simplifying the Conversion with C Library Functions
	B. Creating New Functions
	C. Omitting FORTRAN 77 Intricacies
	D. Clarifying Variable Names
	E. Removing Unused Features of Program
	F. Correcting FOR-C File Procedures
	G. Correcting FOR-C Directory Specifications

	6. Testing and Validation
	Appendix A Percentage Discrepancy Between F-FM and C-FM
	Appendix B FORCEMOB Flowchart
	Appendix C Illustrations
	Appendix D References
	Appendix E Abbreviations

	1_REPORT_DATE_DDMMYYYY: XX-08-2015
	2_REPORT_TYPE: Final
	3_DATES_COVERED_From__To:
	4_TITLE_AND_SUBTITLE: Conversion of the Forces Mobilization Model (FORCEMOB) from FORTRAN to C
	5a_CONTRACT_NUMBER: HQ0034-14-D-0001
	5b_GRANT_NUMBER:
	5c_PROGRAM_ELEMENT_NUMBER:
	5d_PROJECT_NUMBER: DE-6-3247 A12
	5e_TASK_NUMBER:
	5f_WORK_UNIT_NUMBER:
	6_AUTHORS: Atwell, Robert
Romana, Amrit
Wallace, Thomas
	7_PERFORMING_ORGANIZATION: Institute for Defense Analyses
4850 Mark Center Drive
Alexandra, VA 22311-1882
	8_PERFORMING_ORGANIZATION: IDA Document D-5555
Log: H 15-000717
	9_SPONSORINGMONITORING_AG: Defense Logistics Agency
Strategic Materials Office
8725 John J. Kingman Rd. #2545
Fort Belvoir, VA 22060

	10_SPONSORMONITORS_ACRONY: DLA
	1_1_SPONSORMONITORS_REPOR:
	12_DISTRIBUTIONAVAILABILI: Approved for public release; distribution is unlimited.
	13_SUPPLEMENTARY_NOTES:
	14ABSTRACT: This document describes the conversion of the Forces Mobilization Model (FORCEMOB) from the FORTRAN programming language to the C programming language. FORCEMOB is stable and produces consistent results, but updating it to a more modern language would be beneficial for software maintenance and development. Conversion was achieved through a combination of automated translation with the FOR-C tool and human code review and modification. The C version of FORCEMOB was validated against the FORTRAN version: given identical data, it should produce identical results. Testing reveals that the C version of FORCEMOB is identical to 6 decimal places, which is well within an acceptable range of precision. The authors conclude that the C version of FORCEMOB is ready for operational use.
	15_SUBJECT_TERMS: FORCEMOB; strategic materials; software development
	a_REPORT: Unclassified
	bABSTRACT: Unclassified
	c_THIS_PAGE: Unclassified
	17_limitation_of_abstract: Same as Report
	number_of_pages: 48
	19a_NAME_OF_RESPONSIBLE_P: Stead, Paula
	19b_TELEPHONE_NUMBER_Incl: 703-767-4015
	Reset:

